Inorg. Chem. **2007**, 46, 5686−5690

Selenium Oxoanion Compounds of Palladium(II)

Jie Ling and Thomas E. Albrecht-Schmitt*

*Department of Chemistry and Biochemistry, 179 Chemistry Building, Auburn Uni*V*ersity, Auburn, Alabama 36849*

Received March 19, 2007

Three new palladium compounds, PdSeO₃, PdSe₂O₅, and Na₂Pd(SeO₄)₂, containing selenium oxoanions of both Se(IV) and Se(VI) have been prepared under mild hydrothermal conditions. PdSe₂O₅ and Na₂Pd(SeO₄)₂ both possess one-dimensional structures. Within the structure of $PdSe₂O₅$, $[PdO₄]$ square planar building blocks are joined together through diselenite, Se $_2$ O $_5$ 2 $^-$, anions, and form a zigzag chain along the $\it c$ axis. In Na $_2$ Pd(SeO $_4)_2$, [PdO $_4$] units are connected by two selenate, SeO₄²⁻, anions, and extend along the a axis to form a $[\text{Pd}(\text{SeO}_4)_2]^2$ ⁻ chain. Na⁺ cations reside in the space between the $[\mathsf{Pd}(\mathsf{SeO}_4)_2]^2$ chains and act as counter cations. Unlike above two compounds, PdSeO₃ exhibits a layered structure. In the structure of PdSeO₃, [PdO₄] units are connected to each other by corner-sharing and form a zigzag chain along the b axis. The chains are further joined together by tridentate selenite, SeO $_3$ ^{2–}, anions to form layers in the [*ab*] plane that stack along the c axis. Crystallographic data: (193 K; Mo Kα, $\lambda = 0.71073$ Å): PdSeO₃, monoclinic, space group P2₁/m, a = 3.8884(5) Å, b = 6.4170(8) Å, c = 6.1051(7) Å, $\beta = 96.413(2)$ °, $V = 151.38(3)$ Å³, $Z = 2$; PdSe₂O₅, monoclinic, space group C2/c, a = 12.198(2) Å, $b = 5.5500(8)$ Å, $c = 7.200(1)$ Å, $\beta = 107.900(2)^\circ$, $V = 463.8(1)$ Å³, $Z = 4$; Na₂Pd(SeO₄)₂, triclinic, space group $\overline{P1}$, $a = 4.9349(11)$ Å, $b = 5.9981(13)$ Å, $c = 7.1512$ (15) Å, $\alpha = 73.894(4)^\circ$, $\beta = 86.124(4)^\circ$, $\gamma =$ 70.834(4)°, $V = 192.03(7)$ Å³, $Z = 1$.

Introduction

The aqueous and solid-state chemistry of selenium are extraordinarily rich, yielding a variety of Se(IV) and Se(VI) species that include H_2 SeO₃, HSeO₃⁻, SeO₃²⁻, Se₂O₅²⁻, and SeO_4^2 ^{-1,2} One of the primary interests in Se(IV) compounds is discerning the role that the lone-pair of electrons on the Se(IV) centers plays in the local and extended structures of these compounds. There are three major themes recognized for the effects of the lone-pair of electrons that are in addition to its local stereochemical activity. The first of these is dimensional reduction. Take for example the uranyl selenite system, the majority of uranyl-containing compounds are two-dimensional;³ however, $Ca[UO_2(SeO_3)_2]$ and $Sr[UO_2 (SeO₃)₂$ \cdot ²H₂O are both one-dimensional.⁴ The second effect is the formation of channels and cavities within extended networks to house the lone-pair of electrons. Cavity and channel formation is recognized in β -AgNpO₂(SeO₃),⁵ M₂- $(SeO₃)₃·3H₂O$ (M = Al,⁶ Ga,⁷ Cr⁸), In(OH)(SeO₃).⁹ Tb₃O₂- $Cl(SeO₃)₂$,¹⁰ Tb₅O₄Cl₃(SeO₃)₂,¹⁰ and Tb₂Se₂O₇.¹¹ The third major effect is the formation of noncentrosymmetric structures as occurs in $A_2(M_0O_3)_3$ SeO₃ (A = Rb, Cs, Tl, NH₄),¹² $Cs(VO₂)₃(SeO₃)₂,¹³$ and Na₂MoSeO₆.¹⁴

Diselenite compounds containing the $\text{Se}_2\text{O}_5{}^{2-}$ anion are becoming increasingly common in Se(IV) oxoanion chem-

- (4) Almond, P. M.; Peper, S. M.; Bakker, E.; Albrecht-Schmitt, T. E. *J. Solid State Chem.* **2002**, *168*, 358.
- (5) Albrecht-Schmitt, T. E.; Almond, P. M.; Sykora, R. E. *Inorg. Chem.* **2003**, *42*, 3788.
- (6) Harrison, W. T. A.; Stucky, G. D.; Morris, R. E.; Cheetham, A. K. *Acta Crystallogr. C* **1992**, *48*, 1365.
- (7) Rastsvetaeva, R. K.; Andrianov, V. I.; Volodina, A. N. *Dokl. Akad. Nauk. SSSR* **1986**, *291*, 352.
- (8) Harrison, W. T. A.; Stucky, G. D.; Cheetham, A. K. *Eur. J. Solid State Inorg. Chem.* **1993**, *30*, 347.
- (9) Paterson, B.; Harrison, W. T. A. *Z. Anorg. Allg. Chem.* **2007**, *633*, 158.
- (10) Wontcheu, J.; Schleid, T. *Z. Anorg. Allg. Chem.* **2005**, *631*, 309.
- (11) Wontcheu, J.; Schleid, T. *Z. Anorg. Allg. Chem.* **2002**, *628*, 1941.
- (12) (a) Dussack, L. L.; Harrison, W. T. A.; Jacobson, A. J. *Mater. Res. Bull.* **1996**, *31*, 249. (b) Harrison, W. T. A.; Dussack, L. L.; Jacobson, A. J. *Inorg. Chem.* **1994**, *33*, 6043.
- (13) Harrison, W. T. A. *Acta Crystallogr*. **2000**, *C56*, E422.
- (14) Porter, Y.; Halasyamani, P. S. *J. Solid State Chem*. **2003**, *174*, 441.

5686 Inorganic Chemistry, Vol. 46, No. 14, 2007 10.1021/ic700524c CCC: \$37.00 © 2007 American Chemical Society Published on Web 06/12/2007

^{*} To whom correspondence should be addressed. E-mail: albreth@ auburn.edu.

⁽¹⁾ Dumm, J. Q.; Brown, P. W. *J. Am. Ceram. Soc.* **1997**, *80*, 2488.

⁽²⁾ Chen, F.; Burns, P. C.; Ewing, R. C. *J. Nucl. Mater.* **1999**, *275*, 81.

^{(3) (}a) Burns, P. C.; Miller, M. L.; Ewing, R. C. *Can. Mineral.* **1996**, *34*, 845. (b) Burns, P. C. In *Uranium: Mineralogy, Geochemistry and the Environment*; Burns, P. C., Finch, R., Eds.; Mineralogical Society of America: Washington, DC, 1999; Chapter 1. (c) Burns, P. C. *Mater. Res. Soc. Symp. Proc.* **2004**, *802*, 89. (d) Burns, P. C. *Can. Mineral.* **2005**, *43*, 1839.

Selenium Oxoanion Compounds of Palladium(II)

istry, and are known with f-block metals, e.g., in $UO_2Se_2O_5$,¹⁵ with alkaline-earth metals in $AESe_2O_5$ ($AE = Mg$,¹⁶ Ca,¹⁷) $Sr¹⁸ Ba¹⁹$, and with d-block metals, e.g., in MnSe₂O₅²⁰ and $[H_2pip][Cu_2(Se_2O_5)_3]$.²¹ MSe₂O₅ (M = Pb, Cd, Mn) and Cr₂- $(Se₂O₅)₃$ are also known and have been characterized by vibrational spectroscopy.22 The ammonium salt of diselenite, $(NH_4)_2$ Se₂O₅, has been studied by neutron diffraction and shown to undergo a phase transition at 312 K.^{23-25} Despite the presence of two lone-pairs of electrons on the diselenite anion, most compounds are centrosymmetric; notable exceptions include LiFe(Se_2O_5)₂,²⁶ $\text{Nb}_2\text{Se}_4\text{O}_{13}$,²⁷ $\text{Nd}_2(\text{Se}_2\text{O}_5)$ ₃·H₂-
SeQ₂•2H₂O²⁸ and In₂(Se₂O₂)</sub>²⁹ Small second-harmonic SeO_3 ² H_2O_2 ²⁸ and $\text{In}_2(\text{Se}_2\text{O}_5)$ ²⁹ Small second-harmonic generation responses have been observed for the frequencygeneration responses have been observed for the frequencydoubling of 1064 nm light by $In_2(Se_2O_5)_3$.²⁹ Magnetic ordering has been observed in diselenite compounds, e.g., in $M_2(Se_2O_5)_3$ (M = Cr,³⁰ Mn,³¹ Fe³⁰). Mixed selenite/ diselenite compounds have also been reported and include $Ca_2(HSeO_3)_2(Se_2O_5)$,^{1,32} $Ca_2(SeO_3)(Se_2O_5)$,¹⁹ $Au_2(SeO_3)_2$ - $(Se_2O_5)^{33}$ M(HSeO₃)(Se₂O₅) (M = Fe,³⁴ Cr³⁵), Sm₂(SeO₃)- $(Se_2O_5)_2^{36}$ La (Se_2O_5) (HSeO₃)(H₂O) \cdot H₂O,³⁷ and Ga(HSeO₃)-
 $(Se_2O_5) \cdot 1.07H_2O$ ³⁸ $(Se₂O₅) \cdot 1.07H₂O³⁸$

While it is generally and correctly predicted that selenate compounds containing $\text{SeO}_4{}^{2-}$ would possess similar structures with that of sulfates, the fact is that selenates have proven to be far richer with examples of nanotubules being observed in the uranyl selenates, $(C_4H_{12}N)_{14}[(UO_2)_{10}(SeO_4)_{17}$ - (H_2O)]³⁹ and $K_5[(UO_2)_3(SeO_4)_5](NO_3)(H_2O)_{3.5}.^{40}$ In this work we provide example of new Pd(II) compounds containing selenite, diselenite, and selenate anions with the synthesis,

- (15) Trombe, J. C.; Galy, J. *J. Solid State Chem*. **1986**, *61*, 308.
- (16) Mueller, H.; Unterderweide, K.; Engelen, B. *Z. Kristallogr.* **1996**, *211*, 700.
- (17) Delage, C.; Carpy, A.; Goursolle, M. *Acta Crystallogr*. *B* **1982**, *38*, 1278.
- (18) Effenberger, H. *Acta Crystallogr. C* **1987**, *43*, 182.
- (19) Giester, G.; Lengauer, C. L. *Monatsh. Chem.* **1998**, *129*, 445.
- (20) Bonvoisin, J.; Galy, J.; Trombe, J. C. *J. Solid State Chem*. **1993**, *107*, 171.
- (21) Feng, M. L.; Prosvirin, A. V.; Mao, J. G.; Dunbar, K. R. *Chem.*-*Eur. J.* **2006**, *12*, 8312.
- (22) Gopinath, A. B.; Devanarayanan, S*. Int. J. Modern Phys. B* **1999**, *13*, 2645.
- (23) Makarova, I. P.; Muradyan, L. A.; Rider, E. E.; Sarin, V. A.; Vinogradova, I. S.; Simonov, V. I. *Kristallogr.* **1990**, *35*, 889.
- (24) Makarova, I. P.; Muradyan, L. A.; Vinogradova, I. S.; Simonov, V. I. *Ferroelect.* **1990**, *107*, 275.
- (25) Chomnilpan, S. *Acta Crystallogr. B* **1980**, *36*, 675.
- (26) Giester, G. *Monatsh. Chem.* **1993**, *124*, 1107.
- (27) Halasyamani, P. S.; O'Hare, D. *Chem. Mater*. **1998**, *10*, 646. (28) Stancheva, M.; Petrova, R.; Macicek, J. *Acta Crystallogr*. *C* **1998**, *54*, 699.
- (29) Ok, K. M.; Halasyamani, P. S. *Chem. Mater*. **2002**, *14*, 2360.
- (30) Lafront, A. M.; Bonvoisin, J.; Trombe, J. C. *J. Solid State Chem*. **1996**,
- *122*, 130. (31) Malela, S. P.; Khandelwal, B. L. *Zh. Neorg. Khim.* **1980**, *25*, 3019.
- (32) Valkonen, J. *J. Solid State Chem.* **1986**, *65*, 363.
- (33) Jones, P. G.; Schwarzmann, E.; Sheldrick, G. M.; Timpe, H. *Z. Naturforsch. B* **1981**, *36*, 1050.
- (34) Muilu, H.; Valkonen, J. *Acta Chem. Scand. A* **1987**, *A41*, 183.
- (35) Wildner, M.; Andrut, M. *J. Solid State Chem.* **1998**, *135*, 70.
- (36) Wickleder, M. S. *Z. Anorg. Allg. Chem.* **2006**, *632*, 2377.
- (37) Feng, M. L.; Mao, J. G. *J. Alloy Compd.* **2005**, *391*, 33.
- (38) Morris, R. E.; Cheetham, A. K. *Chem. Mater*. **1994**, *6*, 67.
- (39) Krivovichev, S. V.; Kahlenberg, V.; Tananaev, I. G.; Kaindl, R.; Mersdorf, E.; Myasoedov, B. F. *J. Am. Chem. Soc*. **2005**, *127*, 1072.
- (40) Krivovichev, S. V.; Kahlenberg, V.; Kaindl, R.; Mersdorf, E.; Tananaev, I. G.; Myasoedov, B. F. *Angew. Chem., Int. Ed.* **2005**, *44*, 1134.

structures, and characterization of $PdSeO₃$, $PdSe₂O₅$, and Na₂- $Pd(SeO₄)₂$.

Experimental Section

Pd(NO₃)₂ (99.9%, Alfa-Aesar), Na₂SeO₄ (99.8%, Alfa-Aesar), and $KNO₃$ (99.9%, Alfa-Aesar) were used as received without further purification. Concentrated H_2 SeO₄ solution was prepared by evaporating 40% H2SeO4 (Alfa-Aesar) at ∼200 °C. Distilled and Millipore-filtered water with resistance of 18.2 MΩ·cm was used in all reactions. SEM/EDX analyses were performed using a JEOL JSM-7000F. Sodium, palladium, and selenium standards were used to calibrate the results, and the EDX ratios are within 3% of the ratios determined from single-crystal X-ray diffraction experiments.

PdSeO₃ was prepared by loading Pd($NO₃$)₂ (101.0 mg, 0.438) mmol), $KNO₃$ (88.6 mg, 0.876 mmol), 0.2 mL of concentrated $H₂$ -SeO4, and 0.5 mL of water in a 23-mL PTFE-lined autoclave. The autoclave was sealed and heated at 200 °C in a box furnace. After 4 days, the furnace was cooled to room temperature at a rate of 9 °C/h. The reaction product contained a single phase of dark orange crystals immersed in a pale yellow mother liquor. The product was washed with water and methanol and allowed to dry. Yield: 84 mg (82% based on Pd). EDX analysis provided a Pd/Se ratio of 1:1 (47:53).

PdSe₂O₅ was prepared by loading Pd(NO₃)₂ (183.0 mg, 0.794) mmol), $KNO₃$ (160.6 mg, 1.588 mmol), 0.4 mL of concentrated H2SeO4, and 0.5 mL of water in a 23-mL PTFE-lined autoclave. The autoclave was sealed and heated at 200 °C in a box furnace. After 4 days, the furnace was cooled to room temperature at a rate of 9 °C/h. The reaction product contained a single phase of orange crystals immersed in a colorless mother liquor. The product was washed with water and methanol and allowed to dry. Yield: 183 mg (66.9% based on Pd). EDX analysis provided a Pd/Se ratio of 1:2 (34:66).

 $Na₂Pd(SeO₄)₂$ was prepared by loading $Pd(NO₃)₂$ (116.5 mg, 0.506 mmol), $Na₂SeO₄$ (191.2 mg, 1.012 mmol), 0.3 mL of concentrated H_2 SeO₄, and 0.5 mL of water in a 23-mL PTFE-lined autoclave. The autoclave was sealed and heated at 200 °C in a box furnace. After 4 days, the furnace was cooled to room temperature at a rate of 9 °C/h. The reaction product consist of yellow crystals of Na₂Pd(SeO₄)₂ as major product and orange crystals of PdSe₂O₅ as minor product. The product was washed with water and methanol and allowed to dry. Yield: 120 mg (54.3% based on Pd). EDX analysis provided a Na/Pd/Se ratio of 2:1:2 (42:19:39).

Crystallographic Studies. Single crystals of PdSeO₃, PdSe₂O₅, and Na₂Pd(SeO₄)₂ with dimensions of 0.035 mm \times 0.033 mm \times 0.010 mm, 0.092 mm \times 0.089 mm \times 0.023 mm, and 0.110 mm \times 0.039 mm \times 0.020 mm were selected and mounted on glass fibers with epoxy and aligned on a Bruker SMART APEX CCD X-ray diffractometer with a digital camera. Intensity measurements were performed using graphite-monochromated Mo $K\alpha$ radiation from a sealed tube with a monocapillary collimator. The intensities and positions of reflections of a sphere were collected by a combination of three sets of exposure frames. Each set had a different φ angle for the crystal, and each exposure covered a range of 0.3° in *ω*. A total of 1800 frames was collected with an exposure time per frame of 30 s for PdSeO₃, 10 s for PdSe₂O₅, and 20 s for Na₂Pd(SeO₄)₂.

Determination of integrated intensities and global cell refinement were performed with the Bruker SAINT (v 6.02) software package using a narrow-frame integration algorithm. A numerical absorption correction was applied on the basis of the indexed crystal faces followed by a semiempirical absorption correction using SAD-

Table 1. Crystallographic Data for PdSeO₃, PdSe₂O₅, and Na2Pd(SeO4)2

formula	PdSeO ₃	PdSe ₂ O ₅	$Na2Pd(SeO4)2$
formula mass	233.36	344.32	438.3
color and habit	orange, plate	orange, prism	yellow, block
cryst syst	monoclinic	monoclinic	triclinic
space group	$P2_1/m$ (No. 11)	$C2/c$ (No. 15)	$P1$ (No. 2)
a(A)	3.8884(5)	12.198(2)	4.9349(11)
b(A)	6.4170(8)	5.5500(8)	5.9981(13)
c(A)	6.1051(7)	7.200(1)	7.1512(15)
α (deg)	90	90	73.894(4)
β (deg)	96.413(2)	107.900(2)	86.124(4)
γ (deg)	90	90	70.834(4)
$V(A^3)$	151.38(3)	463.8(1)	192.03(7)
Z	2	4	1
T(K)	193	193	193
λ (Å)	0.71073	0.71073	0.71073
$max 2\theta$ (deg)	56.54	56.58	56.60
$\rho_{\rm{calcd}}$ (g cm ⁻³)	5.120	4.931	3.790
μ (Mo K α) (cm ⁻¹)	179.25	196.1	120.15
$R(F)^a$ for $F_0^2 > 2\sigma(F_0^2)$	0.0190	0.0234	0.0241
$R_{\rm w}(F_{\rm o}^2)^b$	0.0476	0.0596	0.0656

 a $R(F) = \sum ||F_0| - |F_c||/\sum |F_0|$. *b* $R_w(F_0^2) = [\sum [w(F_0^2 - F_c^2)^2]/\sum wF_0^4]^{1/2}$.

ABS.⁴¹ The program suite SHELXTL (v 5.1) was used for space group determination (XPREP), direct methods structure solution (XS) , and least-squares refinement (XL) .⁴² The final refinements included anisotropic displacement parameters for all atoms and a secondary extinction parameter. Some crystallographic details are listed in Table 1. Further details of the crystal structure investigations may be obtained from the Supporting Information.

Powder X-ray Diffraction. Powder X-ray diffraction patterns were collected with a Rigaku Miniflex powder X-ray diffractometer using Cu K α (λ = 1.54056 Å) radiation. The collected patterns were compared with that calculated from single-crystal data using ATOMS.⁴³

Vibrational Spectroscopy. The IR spectra of three title compounds were taken from a sample in KBr with the spectrometer Shimadzu IR Prestige-21 in the wavenumber range of 4000-⁴⁰⁰ cm^{-1} .

Thermal Analysis. For the investigation of the thermal behavior, 12 mg of the title compounds were heated (3 °C/min) up to 600 °C under a nitrogen flow using a TA differential scanning calorimeter (DSC) Instruments Model 2920. The residue compositions were checked by powder X-ray diffraction.

Results and Discussion

Synthesis of PdSeO3, PdSe2O5, and Na2Pd(SeO4)2. Both of $PdSeO₃$ and $PdSe₂O₅$ were synthesized by reacting Pd- $(NO₃)₂$, KNO₃, and concentrated $H₂SeO₄$ under mild hydrothermal condition. In these two reactions, some of the SeO_4^2 was reduced to SeO_3^{2-} as occurs in the preparations of Th- $(SeO₃)(SeO₄)⁴⁴$ and $Ag₄(Mo₂O₅)(SeO₄)₂(SeO₃)⁴⁵$. The relatively strong oxidizing power of selenate $(E^{\circ} = 1.151 \text{ V})$ might be sufficient to oxidize water under hydrothermal

Figure 1. (a) View of the structure of $PdSeO₃$ showing $[PdO₄]$ units joined together through corner-sharing to form a chain that extends down the *b* axis. The palladium chains are further connected by tridentate SeO_3^2 anions. (b) A depiction of the neutral layers in PdSeO3.

conditions. In the preparation of $PdSe₂O₅$, the concentration of H_2 SeO₄ was double that in the synthesis of PdSeO₃. At higher concentrations of H_2 SeO₄, the formation of PdSe₂O₅, instead of PdSeO3, was more favorable, which is consistent with previously reported results.³⁸ The role of $KNO₃$ in these reactions is not clear, but the attempts to make these two compounds in the absence of $KNO₃$ failed. In the synthesis of $Na₂Pd(SeO₄)₂$, the addition of $Na₂SeO₄$ to the reaction mixture allowed for the isolation of a selenate compound. There were also small amounts of $PdSe₂O₅$ found as a byproduct.

Crystal Structure of PdSeO₃. The structure of PdSeO₃ contains a crystallographically unique Pd(II) center in a classical four coordinate environment with a square planar geometry. The Pd atom resides on the origin (inversion center), and is bound to four oxygen atoms from four selenite anions. The Pd-O bond distances within the $[PdO_4]$ unit are $2.021(2)$ and $2.008(2)$ Å, and the O-Pd-O angles are 88.95(11) $^{\circ}$ and 91.05(11) $^{\circ}$, which are close to an idealized geometry. Two [PdO₄] units are joined together through corner-sharing to form a chain that extends down the *b* axis. The palladium chains are further connected by tridentate SeO_3^2 anions and form a layered structure, as shown in Figure 1. There are two crystallographically unique oxygen

⁽⁴¹⁾ SADABS, Program for absorption correction using SMART CCD based on the method of Blessing: Blessing, R. H. *Acta Crystallogr. A* **1995**, *51*, 33.

⁽⁴²⁾ Sheldrick, G. M. *SHELXTL PC, Version 5.0, An Integrated System for Sol*V*ing, Refining, and Displaying Crystal Structures from Diffraction Data*; Siemens Analytical X-ray Instrument, Inc.: Madison, WI, 1994.

⁽⁴³⁾ *ATOMS 6.1*; Shape Software: Kingsport, TN, 2004.

⁽⁴⁴⁾ Sullens, T. A.; Almond, P. M.; Byrd, J. A.; Beitz, J. V.; Bray, T. H.;

Albrecht-Schmitt, T. E. *J. Solid State Chem*. **2006**, *179*, 1192. (45) Ling, J.; Albrecht-Schmitt, T. E. *J. Solid State Chem*. **2007**, *180*, 1601.

Figure 2. Illustration of the one-dimensional chains formed from [PdO₄] units and $\text{Se}_2\text{O}_5{}^{2-}$ anions in the structure of PdSe_2O_5 .

Figure 3. View of the one-dimensional $[Pd(SeO₄)₂]²⁻$ chains in Na₂Pd- $(SeO₄)₂$.

atoms within the selenite anions. O(1) is connected to two Pd atoms with Se $-$ O bond distance of 1.785(1) Å, while $O(2)$ is connected to one Pd atom with a Se $-$ O bond distance of 1.689(2) Å. The bridging tridentate SeO_3^2 anion has bond angles ranging from $97.0(1)^\circ$ to $105.4(2)^\circ$. The palladium selenite layers further stack along the *c* axis, as is shown in Figure 1A. The calculated bond valence sums (BVS) for Pd- (1) and Se(1) are 2.193 and 3.855, respectively.^{46,47} Selected bond distances are given in Table 2.

Crystal Structure of PdSe2O5. In the structure of $PdSe₂O₅$, $Pd(II)$ ions also have a square planar fourcoordinate environment. The Pd atoms sit on a mirror plane and are bound to four oxygen atoms from two $\text{Se}_2\text{O}_5{}^{2-}$ anions. The Pd-O bond distances within the $[PdO₄]$ unit are $2.017(3)$ and $2.018(3)$ Å, which are nearly equal. The ^O-Pd-O angles show significant deviations from 90° with the lowest and highest values being $84.3(1)^\circ$ and $95.7(1)^\circ$. Each $[PdO_4]$ unit is connected to two other $[PdO_4]$ units through two $\text{Se}_2\text{O}_5{}^{2-}$ anions and forms a chain, as is shown in Figure 2. The chains extend along the *c* axis. In the

Table 2. Selected Bond Distances (Å) and Angles (deg) for PdSeO₃

		Bond Distances (Å)					
$Pd(1) - O(1) \times 2$	2.021(2)	$Se(1)-O(1)$	1.785(3)				
$Pd(1) - O(2) \times 2$	2.008(2)	$Se(1)-O(2)$	1.689(2)				
Angles (deg)							
$O(1) - Pd(1) - O(1')$	180	$O(1) - Se(1) - O(2)$	97.01(10)				
$O(1) - Pd(1) - O(2)$	91.05(11)	$O(1) - Se(1) - O(2')$	97.01(10)				
$O(1) - Pd(1) - O(2')$	88.95(11)	$O(2) - Se(1) - O(2')$	105.37(16)				
$O(1') - Pd(1) - O(2)$	88.95(11)						
$O(1') - Pd(1) - O(2')$	91.05(11)						
$O(2) - Pd(1) - O(2')$	180						
Table 3. Selected Bond Distances (\AA) and Angles (deg) for PdSe ₂ O ₅							
Bond Distances (A)							
$Pd(1) - O(1) \times 2$	2.018(3)	$Se(1)-O(1)$	1.685(3)				
$Pd(1) - O(2) \times 2$	2.017(3)	$Se(1)-O(2)$	1.672(3)				
		$Se(1)-O(3)$	1.788(2)				
Angles (deg)							
$Q(1) = Pd(1) - Q(1')$		$180 \Omega = \Omega(1) - \Omega(1) - \Omega(2)$	105.8(2)				

bridging $\text{Se}_2\text{O}_5{}^{2-}$ anions, each selenium atom has two oxygen $O(1) - Pd(1) - O(1')$ 180 $O(1) - Se(1) - O(2)$ 105.8(2)
 $O(1) - Pd(1) - O(2)$ 84.3(1) $O(1) - Se(1) - O(3)$ 101.2(1) $O(1) - Pd(1) - O(2)$ 84.3(1) $O(1) - Se(1) - O(3)$ 101.2(1)
 $O(1) - Pd(1) - O(2)$ 95.7(1) $O(2) - Se(1) - O(3)$ 102.1(1) $O(1)-Pd(1)-O(2')$ 95.7(1) $O(2)-Se(1)-O(3)$ 102.1(1)
 $O(1')-Pd(1)-O(2)$ 95.7(1) $O(1')-Pd(1)-O(2)$ 95.7(1)
 $O(1')-Pd(1)-O(2')$ 84.3(1) $O(1')-Pd(1)-O(2')$ 84.3(1)
 $O(2)-Pd(1)-O(2')$ 180 $O(2)-Pd(1)-O(2')$

atoms bound to two $[PdO_4]$ squares. The bond distances of Se(1)-O(1) and Se(1)-O(2) are 1.685(3) and 1.672(3) Å, respectively. The remaining oxygen atom O(3) is bound to two selenium atoms as a bridge with a Se-O bond distance of 1.788(2) Å. The BVS values for $Pd(1)$ and $Se(1)$ are 2.174 and 3.926, respectively.^{46,47} Selected bond distances are given in Table 3.

Crystal Structure of Na₂Pd(SeO₄)₂. Similar to PdSe₂O₅, the title compound exhibits a one-dimensional chain structure. The Pd atoms in the structure reside on a center of inversion and are coordinated by four oxygen atoms in a square planar geometry. The bond distances within the [PdO_4] unit are 2.014(2) and 2.019(2) Å. The O-Pd-O angles are $85.48(8)^\circ$ and $94.52(8)^\circ$. [PdO₄] units connect with two neighboring [PdO₄] units through two bidentate SeO_4^2 ⁻ anions to form one-dimensional chains, as is shown in Figure 3. The chains extend along the *a* axis. In the $\text{SeO}_4{}^{2-}$ anions, the bond distances of the selenium atom to bridging oxygen atoms are $1.675(2)$ and $1.673(2)$ Å, while those for the terminated oxygen atoms are 1.617(2) and 1.616(2) Å. There is only one crystallographically unique $Na⁺$ cation in this structure. Na(1) has a six-coordinate environment with Na-O bond distances ranging from 2.342(2) to 2.762(3) Å. The BVS values for Na(1), Pd(1), and Se(1) are 1.094, 2.181, and 5.902, respectively.^{46,47} Selected bond distances are given in Table 4.

Vibrational Spectroscopy. The infrared spectra of these three palladium compounds consist of two primary regions. Several weak bands centered at 560 cm^{-1} in these three IR spectra can be assigned to the distortions of the [PdO₄] square plane.^{48,49} In the IR spectrum of $PdSeO₃$, five sharp bands

⁽⁴⁶⁾ Brown, I. D.; Altermatt, D. *Acta Crystallogr*. *B* **1985**, *41*, 244.

⁽⁴⁷⁾ Brese, N. E.; O'Keeffe, M. *Acta Crystallogr*. *B* **1991**, *47*, 192.

⁽⁴⁸⁾ Panagiotidis, K.; Glaum, R.; Schmedt auf der Guenne, J.; Hoffbauer, W.; Goerzel, H. *Z. Anorg. Allg. Chem.* **2005**, *631*, 2371.

⁽⁴⁹⁾ Nakamoto, K. *Infrared and Raman Spectra of Inorganic and Coordination Compound*s- *Part A: Theory and Applications in Inorganic Chemistr*y, 5th ed.; John Wiley and Sons: New York 1997.

Table 4. Selected Bond Distances (Å) and Angles (deg) for Na₂Pd(SeO₄)₂

Bond Distances (A)						
$Pd(1) - O(1) \times 2$	2.014(2)	$Se(1)-O(1)$	1.675(2)			
$Pd(1) - O(2) \times 2$	2.019(2)	$Se(1)-O(2)$	1.673(2)			
		$Se(1)-O(3)$	1.616(2)			
		$Se(1)-O(4)$	1.617(2)			
Angles (deg)						
$O(1) - Pd(1) - O(1')$	180	$O(1) - Se(1) - O(2)$	105.2(1)			
$O(1) - Pd(1) - O(2)$	94.52(8)	$O(1) - Se(1) - O(3)$	111.2(1)			
$O(1) - Pd(1) - O(2')$	85.48(8)	$O(1) - Se(1) - O(4)$	109.4(1)			
$O(1') - Pd(1) - O(2)$	85.48(8)	$O(2) - Se(1) - O(3)$	104.5(1)			
$O(1') - Pd(1) - O(2')$	94.52(8)	$O(2) - Se(1) - O(4)$	112.6(1)			
$O(2) - Pd(1) - O(2')$	180	$O(3) - Se(1) - O(4)$	113.7(1)			

at 807, 730, 672, 621, and 591 cm⁻¹ are attributable to the vibrational modes of $\text{SeO}_3^{2-1.50}$ Four sharp bands occur at 828, 786, 722, and 675 cm⁻¹ in the IR spectrum of $PdSe₂O₅$ are due to the stretching vibrations of Se-O bonds within the $\text{Se}_2\text{O}_5{}^{2-}$ anions.^{22,29} The vibration bands of $\text{SeO}_4{}^{2-}$ in $\text{Na}_2\text{Pd}(\text{SeO}_4)_2$ are found at 882, 869, 861, 846, and 832 cm⁻¹, and match well with the previously reported vibrational data for selenate.⁵¹

Thermal Analysis. The thermal behavior of selenites and selenates is of interest because there are multiple mechanisms of decomposition including loss of oxygen by selenate and decomposition of the selenate and selenite anions to yield $SeO₂$ ^{50,52} PdSe $O₃$ and PdSe₂ $O₅$ exhibit similar thermal properties. Both of them show a broad endothermic peak in the temperature ranges of $350-560$ °C in their DSC thermograms. The composition of the final residue for the above two compounds is pure PdO, which is identified by powder X-ray diffraction. While in the DSC thermogram of $Na₂Pd(SeO₄)₂$, there are two endothermic peaks centered at

310 and 450 °C, respectively. The small and sharp endothermic peak occurs at 310 \degree C is due to the loss of O₂ during the decomposition of $\text{SeO}_4{}^{2-}$ to $\text{SeO}_3{}^{2-}$. The second strong and broad endothermic peak in the temperature range of 360–550 °C is attributated to the loss SeO_2 from SeO_3^2 ,
which is similar to the thermal behavior of PdSeOs and which is similar to the thermal behavior of $PdSeO₃$ and $PdSe₂O₅$. The composition of the final residue is identified as pure PdO by powder X-ray diffraction.

Conclusions

In this report we have detailed the syntheses, structures, vibrational spectroscopy, and thermal behavior of three new Pd(II) compounds containing oxoanions of selenium. What makes these compounds unusual is the presence of a square planar metal center, which has been previously known primarily from Au(III) compounds with different compositions and structures, e.g., $Au_2(SeO_3)_2(Se_2O_5)^{33}$ and Au_2 - $(SeO₃)₂(SeO₄)⁵³$ Both of these aforementioned compounds are layered, whereas both $PdSe₂O₅$ and $Na₂Pd(SeO₄)₂$ are one-dimensional. The presence of the lone-pair of electrons on the Se(IV) centers may lead to the low-dimensional structures observed for $PdSeO₃$ and $PdSe₂O₅$. Both of these compounds are centrosymmetric despite the presence of the lone-pair of electrons.

Acknowledgment. This work was supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, Heavy Elements Program, U.S. Department of Energy under Grant No. DE-FG02-01ER15187.

Supporting Information Available: X-ray crystallographic files in CIF format for $PdSeO₃$, $PdSe₂O₅$, and $Na₂Pd(SeO₄)₂$. This material is available free of charge via the Internet at http://pubs. acs.org.

IC700524C

⁽⁵⁰⁾ Verma, V. P. *Thermochim. Acta* **1999**, *327*, 63.

⁽⁵¹⁾ Sathjanandan, L.; McCory, L. D.; Margrave, J. L. *Spectrochim. Acta* **1964**, *20*, 957.

⁽⁵²⁾ Havlicek, D.; Micka, Z.; Boublikova, R. *Coll. Czech. Chem. Commun.* **1995**, *60*, 969.

⁽⁵³⁾ Wickleder, M. S.; Buechner, O.; Wickleder, C.; El Sheik, S.; Brunklaus, G.; Eckert, H. *Inorg. Chem.* **2004**, *43*, 5860.